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Abstract--Theorems which relate averages of surface derivatives to spatial derivatives of surface averages 
are derived. The theorems are then applied to balance equations for surface properties in multiphase 
systems. Macroscopic point equations complementing the macroscopic equations for bulk phases are 
obtained which allow for a more complete fundamental description of multiphase transport. 
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I N T R O D U C T I O N  

The theoretical description of multiphase flow at the microscopic level is complicated by the 
complex geometry of interphase boundaries. One procedure for working around this problem is 
the use of local volume averaging (Anderson & Jackson 1967; Bachmat 1972; Gray & Lee 1977; 
Slattery 1967; Whitaker 1967). By this process, classical equations of continuum mechanics valid 
at the microscopic level are averaged over a representative local volume, indicated as 6 V, to obtain 
an average description of phase behavior at each point in space. The effect of this procedure is 
to represent the multiphase mixture as a collection of overlapping continua. The averaged, or 
macroscale, equations depend on the void fraction (which does not exist at the microscale) as well 
as products of deviations from mean values and terms accounting for interphase transport. 

The microscopic balance equation for a general property @ having the (intraphase) flux i k, 
external supplyfand production G may be expressed in cartesian coordinates as follows (Brodkey 
1967): 

~P~ + (p~bvk),k t k -- p f - -  G = 0. [1] - -  - -  " k  

dt 

By averaging this equation over a representative volume composed of a mixture of phases, the 
following averaged point equation or macroscopic equation for a phase a may be obtained and 
expressed in cartesian coordinates as (e.g. Hassanizadeh & Gray 1979a): 

c3t + (E =(p >=~6~) .k  -- (I'~).k -- ¢~(p )=f= --  c~(p ) " C  = 

1 F Lo'~'(w k v ~')+i ~k]n ~kdS, [2] 
6V .Is,~ 

where 

E ~ = the volume fraction of phase ~, 
p~= the microscopic density within phase ~, 

( p ) ~ =  the intrinsic average mass density of the a-phase, 
~,~ = a microscopic property of the a-phase, 
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and 

S ~ =  
w k _~. 

i ~k = 

the mass average of ~b ' for the s-phase, 
the microscopic velocity within the a-phase, 
the interfacial area between the a-phase and all other phases in di V, 
the microscopic velocity of the interphase boundary S,~ 
the mass average velocity of the or-phase, 
the microscopic intraphase flux vector for the or-phase, 
the macroscopic intraphase flux vector for the 0t-phase (it includes the average of the 
product of deviations of ~k ~ and v~*), 

f ~ =  the mass average o f f  for the or-phase 

t~" = the mass average of G for the or-phase. 

The integral of microscopic quantities over S,~ accounts for interphase transport and mechanical 
interactions between the or-phase and all other phases. Throughout this text, superscripts i, j, and 
k refer to cartesian coordinates. In addition to [2] averaging of microscopic equations must also 
include the averaging of microscopic jump conditions at interfaces. Previous studies based on 
volume averaging (e.g. Hassanizadeh & Gray 1979a) have not included intrafacial transport. Thus, 
the possibility that thermo-mechanical properties may be stored within the interface or transported 
along the interface has been excluded in the averaging approach. This exclusion places a severe 
restriction on developing complete theories for multiphase flows at the macroscale. In particular, 
systems wherein mass accumulates at interfaces or where interfacial tension and energy play an 
important role, can not be modeled properly. For such systems, although [2] remains valid, 
equations are needed which account for the macroscopic  manifestation of microscopic interfacial 
properties. 

In the past, Ishii (1975) has employed a time-averaging approach along with a number of 
simplying assumptions to include surface effects in a two-phase flow model. Drew (1971) and Drew 
& Segel (1971) have included surface momentum effects in their model but did not consider surface 
mass, energy or entropy contributions. Hassanizadeh (1979) recognized the need to incorporate 
such momentum, energy and entropy in macroscopic jump conditions at the macroscale. Abriola 
& Gray 0985) considered massless interfaces and examined the way that surface properties might 
manifest themselves in volume-averaged phase equations. Perhaps the most complete incorporation 
of surface effects in macroscopic phase equations is found in Made (1981, 1982). His work 
incorporates the properties of interphase surfaces and considers curves where interface surfaces 
meet (i.e. contact lines). Despite the quality of this work, it is somewhat incomplete in that 
macroscopic pressure and temperature, variables that should enter the equations only after 
application of a constitutive theory, appear in the averaged equations. Furthermore, it is assumed 
a priori  that thermodynamic relations valid at the microscale are also appropriate for macroscopic 
quantities, whereas such relations must be obtained as outcomes of the constitutive theory. These 
shortcomings make incorporation of Marle's equations in a completely general constitutive theory 
rather difficult. Nevertheless, Marle's work represents the most complete description of multiphase 
flow at the macroscale available. His contention that macroscopic quantities for interfaces and 
macroscopic equations involving these quantities must be written and fully exploited in the study 
of multiphase flows remains true. 

The current paper accomplishes two tasks in progressing toward the complete description of 
multiphase flows. First, local-volume-averaging theorems for time derivatives and surface gradients 
of interracial properties are developed. These theorems are analogous to the theorems for bulk 
properties in that they relate the averages of derivatives to the derivatives of averages. Additionally, 
they transform the sur face  derivatives at the microscale to spat ial  derivatives at the macroscale. 
Second, the theorems are applied to the surface balance equations of mass, momentum, energy and 
entropy to obtain the macroscopic description of these transport equations. In other words, a 
general macroscopic equation suitable for muitiphase systems where microscopic interfaces attain 
surface properties is derived. These equations complement volume-averaged equations for bulk 
phases [2], and they are essential for developing a general constitutive theory. Finally, an 
appropriate formulation of the second law of thermodynamics for such multiphase systems is 
obtained. 
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I N T E R F A C E S  IN M U L T I P H A S E  SYSTEMS 

Bulk phases in a multiphase system are separated by very narrow transition zones which, in a 
continuum description (yet at the microscale), are treated as two-dimensional interfaces. Depending 
on the types of processes being studied, one may assume that these interfaces do not store or attain 
thermodynamic properties, rather they only act as singular surfaces within the phases. For  many 
important processes, however, such an assumption is overly restrictive. For example, in systems 
where adsorption and desorption play an important role in the dynamics of phases, one must assign 
mass to the interfaces. Also, in systems composed of  immiscible phases, surface tension may be 
an important force which must be considered in a global balance of  momentum even though the 
interfaces may be considered massless. 

Similar to their description in bulk phases, thermodynamic processes at interfaces are in general 
described by conservation laws of  surface mass, momentum, energy and entropy. The general 
balance equation for a typical thermodynamic property ~b s of  the interface is (Moeckel 1975) 

aFr~ 2 
a--i- + ( r ¢  ~wO).. - 2 r w ' n ' K  M ~ - -  i ~  - -  F F  - F G  ~ = - y .  [ p ' q ~ ' ( w  k - v ~ )  + u k] n ~k, [3] 

ct=l 

where 

and 

F = the surface density or mass per unit area, 
w a = the flow velocity within the surface (i.e. a = 1, 2), 

KM = the mean curvature of the surface, 
F S =  the external supply term for the surface, 
GS= the production term within the surface 

i ~ =  the flux within the surface. 

The superscripts and subscripts a, b and c are used throughout to indicate surface coordinates and 
the subscript ,a denotes differentiation with respect to surface coordinates. The summation in [3] 
is over the two phases on each side of  the interface. Obviously, constitutive equations are needed 
for interface and bulk phase properties to complete the description of the interface (e.g. Scriven 
1960; Moeckel 1975; Deemer & Slattery 1978). However, often a detailed description of the 
thermodynamic state of the interface at the microscale is not required for multiphase systems. 
Rather, the macroscopic (or averaged) manifestation of  thermodynamic processes are normally 
needed. For this purpose, one has to be able to average [3] over the union of interfaces of interest 
within an averaging volume. In the following, necessary tools are developed and a systematic 
averaging approach is implemented to achieve this goal. 

For  locating interfaces within an averaging volume, the distribution function introduced by Gray 
& Lee (1977) can be used conveniently. Consider figures, la and lb where two possible types of 
surface areas for a two-phase system are depicted. Define the distribution function ? = 1 on one 
side of  the surface of interest and ? = 0 on the other side. The linking of ? with a physical 
distribution of phases will occur later in the paper in order to prevent confusing the averaging 
procedure with application of the resulting theorems. Then, it can be shown (Gray & Lee 1977) 

Zi = - n' 6(x k - Xs k) [4] 

and 

a? 
--at = - -  w i  Z i  --- w i n  ~ 6 ( x  k - -  x k ) ,  [5] 

where x~ is the coordinate of a point on the surface, n i is the normal to the surface pointing into 
the side where ? = 0, w i is the velocity of  the interface and 6(x k - x~) is the Dirac function. Note 
that the interface may be a closed surface, as in figure la, or may terminate on the boundary of  
the averaging volume of  interest, as in figure I b. Although values of ? are indicated in the figure, 
the selection is arbitrary in that the averaging theorems will be unchanged if ? is replaced by 1 - ),. 
Because of the properties of  a delta function, the integrals containing derivatives of ), can be 
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Figure la. Interfacial surface area, S, which is closed 
within an averaging volume 6V. 

Fig. lb. Interfacial surface area, S, which intersects the 
boundary of the averaging volume, 6V. 

rewritten as integrals over surfaces, such as 

fv h y j d V  = -- f s h n i  d S  [6a] 

and 

c3~ . s 
Ot = - U ~,o = U % 6 ( u  ° - U~c), 

~....... 

" '"'! "i 
• Interfaclal 

Curve. ~ ~ I  Area. S p m.,., 

Averaging Volume, ~V 
Figure 2a. Interfacial surface area, Sp, which separates 

phase I from phase lI and has bounding curve C. 
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Figure 2b. Interfacial surface area, So, which separates 
phase I from phase II, terminates within 6 V along curve 

C, and intersects the boundary of  ~V. 

and 

fs v h ~  d V  = hwini  dS ,  [6b] 

where h is an arbitrary function. Replacement of h with hn i in [6a] yields 

f v h n i , . i d V  = - f s h  dS .  [6c] 

Thus, the function 7 is a mathematical convenience which allows for transfering between surface 
and volume integrals. 

In systems with three or more phases, other types of interface surfaces may be encountered. In 
figure 2, some possible types are depicted. In such cases, one may be interested in the macroscopic 
effect of processes occurring at the interfaces between phases, say, I and II (portion Sp in figure 
2). Then it is necessary to transfer between a surface integration carried out over Sp and one carried 
out over the whole of S. For this purpose a surface distribution function ~ is defined such that 

s a 
7 ( u , t ) = l  on Sp [7a] 

and 
s a 
y (u , t) = 0 otherwise, [7b] 

where u ~ is the surface coordinate of  a point on S. Similarly to the manipulations with y, the 
following relations hold for ~. 

s a a 

7.~ = - v . 6 ( u  - Uc) 
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where va is a surface unit vector tangent to the interface and normal to the edge of Sp at the 
intersection curve C (figure 2), U a is the surface velocity of curve C, u~ is the surface coordinate 
of points on curve C and 6(u a -  U~c) is the Dirac function in terms of surface coordinates. 
Furthermore, this function has the properties that 

fs f°~, dS = fs fa dS [8a] 
p 

and 

f s fa~ .a  d S =  - - f c f a V a  d C =  - - f C  f ' v ~ d C ,  

where f i  and v ~ are spatial representations o f f  a and Va, respectively (see further below). 

[8b] 

BACKGROUND RELATIONSHIPS 

In order to develop averaging theorems for interfacial properties, it is necessary to be able to 
transfer between surface and spatial coordinates. The manipulations needed may be found in 
Moeckel (1975), Aris (1962) or any other standard source of information on vectors and tensors. 
For convenience, a few of the most useful required relationships are summarized here. 

If x ~ is a rectangular cartesian coordinate of a point, then a moving surface S ( t )  has the 
representation 

S( t ) :x  ~=x~(u a,t) ,  i = 1 , 3  and a = l , 2 ,  [9] 

where u a are surface parameters and t is time. (Recall that throughout this paper, the 
subscripts/superscripts i, j and k will refer to the cartesian coordinates, while superscripts/subscripts 
a, b and c will denote surface parameters.) The mapping given in [9] is taken to be smooth so that 
the tangent vectors to the surface S are x ~ and are defined at all points on the surface; the comma ,a 

indicates covariant differentiation. At every point on the surface S, a unit normal vector 
n~= n~(u ~, t) exists for which 

and 

n i n i =  1 [10] 

x ~ n i = O. [11] ,a 

The metric tensor (first fundamental form) for the surface is given by 

= x i x i [12] 
g a b  ,a ,b 

and has the inverse gab given by 

g,,,.gCb = 6b, [131 

where fib is the Kronecker delta. The parameterization is made such that 

c3x ~ 
- -  = wJnJn i [14] 
8t 

where w j is the velocity of surface S and w j n j is its normal component. Additionally, the second 
fundamental form for the surface b,b is defined by 

bah i n i [151 X a b 

and has the following properties: 

X ~ bab n~, [16] .ab ~ -  

b~ = g"bbb,,, [1 7] 

bg = 2 KM [181 
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and 

Hi c i ,a = - b  ax.c, [19] 

where KM is the mean curvature. An additional identity which will prove convenient in subsequent 
manipulations is (Aris 1962) 

6 ij = nin j "k" gabx','axJ b • [20] 

A general spatial vector, f k ,  which has a component normal to a surface (as well as tangential 
components) may be expressed in terms of its surface components (the surface vector, f 0  and its 
normal component as 

f k  _-- faxk., .a " } " f  j n j n k "  [21] 

A surface vector, F a, has no components normal to the surface. Nevertheless, it may be expressed 
in terms of a spatial vector, F k, (where F k n k =  0) as 

Fk = Faxk, a" [22] 

Multiplication of [21] by k ab X,bg yields 

f a __ k k ca - f x ,.g . [23] 

Differentiation o f f  a with respect to surface coordinates may be performed to obtain the equation 

a _ _ f k x i  X k ca k k ca k k ca f ,a-~, j . . . .  .g + f x ,,.g + f x ,.g,a [24] 

in which the last term is zero because g,a" -- 0. On the r.h.s, of  [24], substitute [20] into the first term 
and [16] into the second term such that 

f~ ,  = f ~(6 ik - nin k) + f k n k  b,~,.g"~. [25] 

Then from [17] and [18], b,,,.g c"= b~ = 2KM. Thus, 

a k - -  n i - k . " k  2KMnl, f k .  [26] f ., = f ,k n J . i  + 

Note that i f f  k is a unit normal vector n k in [26], the following identity is obtained: 

n ii = - 2KM. [27] 

Therefore [26] may also be written as 

f,~o k k k i  =f ,k  -- n 0 c n ),i. [28] 

These last two equalities are particularly useful in deriving averaged conservation equations for 
surfaces. 

SPATIAL A V E R A G I N G  T H E O R E M  FOR 
SURFACE VECTOR 

The quantity to be averaged is the surface derivative of a surface vector denoted as f.~. The 
averaging is to be done over a surface S which is within an averaging volume, 6V, as pictured in 
figure 1. From [28] the integral of f~, can be expressed as 

6---V f ,~ d S  = f .~ d S  -~- -~  n k ( f k n i ) . i d S .  [29] 

The goal here is to relate the integral of the surface derivative to the spatial derivative of a surface 
integral for an averaging volume which is of constant size and orientation but which is located at 
every point in space. Although 6 V does not vary with space, the amount of interface within 6 V 
and the values of the integrands will depend on the location of the averaging volume. Therefore 
interchanging the order of integration and differentiation is non-trivial. It will be understood here 



AVERAGING THEOREMS AND EQUATIONS FOR MULTIPHASE TRANSPORT 87 

that S is the surface within averaging volume 6 V, and 1/6 V may be removed from [29] such that 
the equation to be manipulated is 

,30, 

Now, converting the integrals on the r.h.s, to integrals over the averaging volume making use of 
[6a] and [6c]: 

fs f ~ a d S : - f  fkk(Wy.j) d V +  r nk(fkni).i(nJy.j)dV. [31] 
v ,J6v  

Note that this substitution has the effect of changing the limits of integration from being temporally 
and spatially varying to limits which are constant with the variation being accounted for by 7. The 
chain rule is used to reorder the differentiation in [31] to obtain 

fs f~.adS : - f ,~  ( f~ '#yj) ,kdV+f,~ nk ( f ' #nJy j ) .gdV+f6  (f*--nkf 'n')(nJy.j) . ,dV. [32] 
v v v 

First, consider the last integral in [32]. The quantity (nJ?.j)., can be rearranged to 

(#y,j)., = n{~ Lj + nJY , j k  " [33] 

Then using [4], one can replace ?.j and obtain 

(nJLj)., = - nJn{kf(x i - x~) + nJ?.jk. [34] 

The first term on the r.h.s, of this equation is zero because nJnJk = 0. Therefore, the last expression 
in [32] satisfies the equality 

f , w ( f '  - n' f 'n ' )  (nJ~,.j),, dV = f ,w(f* - n* f'n')nJLjj, dV.  [35] 

Again, using [4] to obtain 

Zjk = (Y.,)j = ( - n* 6)j = - n~.6 - n* f.j [36] 

and substituting back into the r.h.s, of [35] leaves 

f~v(f* - n* f in ')  (nJ,d)., dV  = - f~v(f* - nk f f  n')nJ(n,6 + n* .~ j) dV. [37] 

Collecting terms on the r.h.s, of [37] yields 

(f* - n' f in')#(n~.6 + n'~ bj) = f*nJnk.6 [381 

so that 

f (fk __ (nJy.j)., = _ | fknJn~ ~ [39] 
r 

nk f i n  ') dV  dV. 
I/ J 6  V 

Then with nJ6 = - ? j ,  the r.h.s, of [39] can be returned to [32], which becomes 

fsf °dS=-f, v OCknJY'J)'*dV+f6 z nk(fkninJyd)'idg+Id,~v f kn~z jdV"  [40] 

Because the limits of integration on the r.h.s, are independent of time and space, the order of 
differentiation and integration of the complete integrand in [40] can be interchanged to obtain 

. . f na?jdV. [41] 
v v 

The last two terms, when converted back to surface integrals using [6a], can be seen to cancel. The 
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first two integrals on the right may also be converted to surface integrals using [6a] to obtain the 
relation 

f/:odS =(fsf dS),-(fsn*Y*n'dS) [42] 

Thus, interchanging the order of differentiation and integration in this averaging process for 
surfaces results in quantities which are completely in terms of spatial coordinates. 

Equation [42] applies to surfaces which are closed or which intersect the boundary of the constant 
averaging volume. However, in multiphase flow modeling, surfaces will exist which intersect other 
surfaces and undergo abrupt changes in properties (e.g. Sp in figure 2). Thus, surfaces may 
themselves be considered as multiphase (two-dimensional) regions which undergo abrupt changes 
of properties on curves (i.e. across contact lines). To treat these discontinuities, it is necessary to 
obtain the equivalent form of [42] for specific portions of the interface. For this purpose the 
distribution function ~ will be employed. 

Let Sp be the portion of surface S where ~ = 1. Therefore, 

f s f ~ d S =  f faradS. [43] p ,Is 
Application of the chain rule provides 

f.~o dS = ( f  7)., dS - f 7.a dS. [44] 
./Sp 

Now application of [42] to the first integral on the r.h.s, and of [8b] to the last integral yields 

dS - f s o f ~ d S : ( f s  f k ,  )., ( f snk fk# ,dS) j+fc faV~dC.  [45] 

Elimination of ~ from this equation using [8a] gives the final form of the theorem: 

fs/~odS=(fsfkdS),k-(fsnkfknidS)+fcf'VSdC. [46] 

T h u s ,  

T IME-AVERAGING THEOREM FOR SURFACE QUANTITIES 

The balance equations for surface quantities typically contain a partial derivative with respect 
to time. This partial derivative is one where the surface parameters rather than the spatial 
coordinates are held constant. The total derivatives of a surface quantity f may be given in two 
equivalent forms: 

f =~t + wf i =~ t  +waf~. [47a] 

~t ~,, =~t x, + w f i - w ~ '  [47b] 

where w ~ is the velocity of the interface and w a includes only its tangential components; they are 
related by [23]. For simplicity of notation, the explicit conditions under which the partial time 
derivative is evaluated will be omitted when the chance for confusion is small. Thus, for a point 
surface equation or for d/c~t in the integrand of a surface integral, I~ will be understood. However 
when c~/Ot appears in the integrand of a volume integral or as operating on an integral, I~ is 
understood. 

- f i  .a, the last term in [47b] With w" transformed to a spatial vector by [23] and because f , -  x i 
becomes 

Wk f "X k X i [48] w° f~ = ~ jg ., ,6. 
Substitution of [20] then yields 

waf~ = wif i -  wk fin'n k. [49] 
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This expression allows [47b] to be written as 

~t ~ Of wkr n i'-k [50] =Sxk+ " '~  " "  

Integration of [50] will be performed over a surface S contained in a time- and space-independent 
averaging volume V. The surface S is itself time and space dependent and its location within V 
is given using the spatial distribution function ?: 

fs dS=;s x S+fs , w*r n i'-k dS. [51] 

Application of [6c] to the first term on the r.h.s, of [51] yields 

fs~t x, ds= - f~v~-t (n'z ')dV, [52] 

Which can be expanded out to the form 

f s"d , :  ~t x* vN (fn'yj)dV + ~ dV. [531 

Because the integration volume is independent of time, the order of differentiation and integration 
may be reversed in the first term on the r.h.s, of [53]. After this operation, [6c] may be invoked 
to convert the first volume integral to a surface integral. Then, substitution back into [51] leads 
to 

f dS + vf dV + ;w*f'n'n* dS" [54] COt 
The second integral on the r.h.s, must be worked on further to complete the derivation of the 
time-averaging theorem. 

Expand the volume integral in [54] to obtain 

ni f~ =-coni f d, , :  f io'(°. ' )  + Jay cot Jay tot )., r i o t  
d Y,i V. [55] 

Replace COy/6t in the first term on the r.h.s, with - w ' y . , ,  as given in [5], and convert the last term 
to a surface integral using [6a]. These steps lead to 

f r fs coni vf T d V =  - fn'(WkLk)jdV - fn'-~-dS. [561 
day 

The last term in this equation is zero and the first term on the r.h.s, may be rearranged to obtain 

< r < - (fn).,w 7,kdV. [57] (fn w ?.k)j dV + 
v d~v  

Now interchanging the order of differentiation and integration in the first term on the r.h.s. 
(allowable because 6 V is spatially invariant) and conversion of both the volume integrals on the 
r.h.s, to surface integrals leaves 

CO(niyD f, vf~dV=(fsn'fwkn*dS),-fs(fn',,,w*n*dS. [58] 

Finally, substitution of [58] into [54] and rearrangement of terms provide the averaging theorem 
for a surface S identifiable using the spatial distribution function Y, 

f s ~ d S = ~ j  s co l f d S + ( f n ~ f w * n * d S  ) /,~ -fsfn',w*n*dS,. [59] 

or with ni~ related to the mean curvature by [27], 

f coSdS co ~gt =~fsfdS+(fsn'fw'n'dS)j+fs 2fKMwkn'dS" [60] 

M.F 15 I - - F  
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Once again if attention is confined to specific portions of S, then [60] should be manipulated 
further. Recall that Sp is the portion of S of interest such that 

f sp~tdS=fs~t~dS.  [61] 

Application of the chain rule and use of the fact that 

0~ + U"~.a 0, [62] 
0t 

where U a is the velocity of the boundary of Sp, leads to 

fs, S fs fs fs .s ydS= ~ ( f ~ ) d S -  f ~ d S =  ~( f~)dS  + fU y.~dS [63] 

so that [61] may be written as 

;s fs dS = ~t (f~) as + fU 7.~ dS. [641 
p 

Then applications of [60] and [42] to the r.h.s, yield 

fs Of dS= O pot ~ f s f~dS+( f snTW~n*;dS) . ,+ f s2 fKMw~n~;dS- f c  f U % d c  [65] 

o r  

(;s / is f dS = ~ f dS + n'fwknk dS + 2fKMwknk dS - fU%i dC. [66] 
p d Sp p / , i  p d C 

Recall that by the notation convention adopted, O/Ot on the l.h.s, of [66] is evaluated with u" held 
constant (i.e. O/OtI,o) while O/Ot on the r.h.s, is evaluated with spatial coordinates held constant 
(i.e. O/OtL~,). The theorem presented as [66] allows the time derivative of a surface property to be 
converted to derivatives at the macroscale. 

TRANSPORT THEOREM 

The time- and space-averaging theorems for surface quantities, [66] and [46] respectively, are of 
interest by themselves. However when averaging the surface conservation equation [3], both 
averaging theorems are needed. The combination of the first three terms, T, in [3] is 

T = 0F~OS Ot + (F~Swa),a - 2win'KMF~ s. [67] 

In this equation, w" is the velocity of the flow in the surface tangent to the surface. If this group 
of terms is integrated over a surface Sp and averaging theorems [46] and [66] are applied, 

f sp [ OF~ks 2wi# KMFd/~] dS L ot + (rq'sw%- 

=O fsFOSdS+(fs FO~w'dS) + I FO~(w~-U~)vidC. [68] Ot p p /.i j c 
This is the transport theorem for surface properties within a constant averaging volume when 
observed at the macroscale. 

CONSIDERATIONS FOR SURFACE AVERAGING 

The development of the averaging theorems has made use of both a phase distribution function 
~, and a surface distribution function ~. These functions can be used to locate all interfacial surfaces 
and parts of surfaces within an averaging volume. In a three-phase system composed of ~-, fl- and 
6-phases, the interfacial surface S is composed of three interfacial types--S~a, S~6 and S~, where 
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the subscripts denote the phases on each side of the interface. In a four-phase system, six different 
interface types exist. Using the transport theorem [68], macroscale balance equations can be 
developed for each of these surface types. Alternatively, one can sum over all the surface types and 
obtain a balance equation for all the surfaces within an averaging volume. In the following section, 
the averaging is performed over only one surface type in the averaging volume to demonstrate the 
application of the theorem presented. 

BALANCE EQUATIONS 

To obtain the appropriate macroscopic balance law for the averaged effect of thermodynamic 
processes which take place at interfaces, [3] needs to be averaged over interfaces of interest within 
an averaging volume. Integration of [3] over the union of interfacial areas between two phases of 
interest within the averaging volume for a multiphase system, application of transport theorem [68] 
and application of spatial averaging theorem [46] to the flux term yields 

d w, dS).k_ isk dS).k + nki nidS),_ _fspFGSd S (fs  

=~{fs[p:'~b:'(v~'k--wk,--i:'k]n:'kdS}+fc[F~Js(Uk--w*,+iSk]v*dC. [69] 
~t= l  p 

Because the surface flux i s" is tangent to the surface, i ~ = i s" xka from [22]. Thus, the fourth term 
in [69] drops out. This equation may now be written conveniently as a point equation, in terms 
of surface-averaged properties after dividing the equation by the averaging volume, as 

( ( r  YqTSasp) + ((r)%U'qYSasp).k -- (U'asp),k -- (r)sFSasp - (r)~CSasp 

where 

= - ~ = l  ~ [P~k~(w* - i~k]nadS + [FO'(U*--wk)+i~k]v*dC' 
p 

f.  
6V = [ dV 

J6 V 

is the averaging volume. The surface average mass density is 

fs FdS 
( F )  s = p 

sp dS 

The surface mass average of ~s, w k, F and G is defined by 

f FfdS 

f~-Ji  ~ C dS 
d Sp 

The surface average flux vector is 

fs [i s* F ~ S ~ ] d S  
I sk = P 

fs ' dS 
p 

[70] 

[71] 

[72] 

[73] 

[74] 
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Table 1. Quantities for specific forms of the general microscopic balance equation [69] and the macroscopic 
balance equation [70] 

~b ~ i ~ F ~ G ~ ~k ~ i ~ 

Mass 1 0 0 0 1 0 
Chemical species 09 ~ j~ 0 r ~o ~ j ~  
Momentum w ~ t ~k g~ 0 t ,~ t ~ 
Energy E~ + ~w 2 t~kw~ + q ~ gJwJ + h s 0 E~ + ~v "~" t ~ t ,  aJ q-q  ~ 
Entropy q~ ~ b ~ A ~ r/~ ~o ~ 

where  

f s  = f _ f ~ .  [75] 

The  specific in te r fac ia l  a r ea  for  sur face  Sp is 

asp = ~ dS.  [761 
p 

T a b l e  1 p r o v i d e s  the t e rms  which  are  s u b s t i t u t e d  in to  [3] to  give the  c o n s e r v a t i o n  e q u a t i o n s  for  
in te r face  t r a n s p o r t  a t  the m i c r o s c o p i c  scale.  Based  on  this  t ab le  a n d  the genera l  m a c r o s c o p i c  
c o n s e r v a t i o n  e q u a t i o n  [69], e q u a t i o n s  o f  b a l a n c e  for  va r i ous  t h e r m o m e c h a n i c a i  p r o p e r t i e s  a re  
o b t a i n e d  as  fo l lows:  

mass  balance, 

p ~ ( v ~ k - v v * ) n ~ k d S  +-~ r(Uk--wk)rkdC; [77] -~ ((r)sa,,) + ((r)s~r, Sk asO.k = ~=~ 
p 

chemical  species balance, 

6t t ( (F)so3Sasp ) + ( (F ) s f f sk~Sasp) ,  k -- (J~asp),~ -- (F)SFSasp 

=~=l [P~CO~(V~k--wk)--J~k]n~*dS + [I'o~s(Uk--wk)+f]r*dC; [78] 
p 

m o m e n t u m  balance, 

- -  / . . . . .  spJ.k (TSJk a~p).k (r)SgSk asp Ot( (F)~G,  SJasp)+((F\s ,r ,  sJ,r, sk,, ~ _ . _ 

±Ills t = =~ ~ [O~V~J(V~k--Wk)--t~Jkln~kdS + ~  [ C w J ( U ~ - w ° ) + t S J " l v ~ d C ;  [791 
p 

energy balance, 

t~t [ (F ) s (~S+½w~: ) a sP ]  + [ ( F ) S ( ~ ' ~ + 5  w asp],k 

- -  [( TSJk ~ sj + -~*) asp].k -- ( F )s (~k  Vb~ + h~)asp 

=~{lfs[P'(E'+½V'2)(V~k--Wk)--t~JkV'J--q'k]n~dS } 
¢t=l p 

+-~--~ [ C ( E S + ½ w 2 ) ( U k - - w k ) + t S J k w J + q ~ l v k d C ,  [801 

and  

g s  = E s + ½ ~s2, [81 a] 

.~sk = Q ~  + (iwk ffsj)~ [81b] 

h s = / ; s  + (~skg~)s ;  [81c] 
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and 

entropy balance, 

= ~ -~ [p~q~(V'k--Wk)--~o~k]n'kdS + [Fqs(Uk-wk)+tp~]vkdC. [82] 
ct=l p 

The averaged equations above are conservation principles for interfacial properties which 
complement the averaged equations obtained for bulk phases (cf. Hassanizadeh & Gray 1979a,b) 
using the well-known volume-averaging theorems (Slattery 1967; Whitaker 1967; Gray & Lee 
1977). These are similar to equations obtained by Marie (1982). However, balance laws for energy 
and entropy obtained here are more general. Heretofore, averaging theory has been applied without 
considering the properties of an interface. If one assumes that the contact line C of three or more 
interfaces does not attain thermodynamic properties, the following jump condition at points along 
C holds: 

M 

[F~O~(U k _ w k) + ?k] V k = 0, [83] 
I 

where the summation sign indicates that the terms must be evaluated as the contact line C is 
approached from within the M interfaces and then summed up. Summation of [70] over all interface 
types in an averaging volume, acknowledging restriction [83], yields 

~ I  ~ ((F)~tff~asP)+((F)S~'~ktff~a~P).k--(l~a~p)'k--(F)~ff~asp - (F)SG~a~p 1 

=~ ~=,~--~ p[P~ql'(V'k--Wk)--i'k]n~kds" [84] 

This equation is a general relation which accounts for a jump in bulk properties across interfaces. 
The l.h.s. [84] accounts for the contribution of interface phenomena to macroscopic processes. 

The new macroscopic balance equations cannot be solved independently of the bulk phase 
equations. However, they complete the description of global conservation principles for a system 
consisting of bulk phases and interfaces. These equations will also be important in deriving 
constitutive relations for averaged phase quantities such as stress and heat flux. For example, 
capillarity is due to interfacial stress and this effect cannot be properly captured in a constitutive 
theory which does not account for surface properties. Additionally, although the utility and 
application of surface balance equations at the microscale are greatly hindered by a lack of 
knowledge of surface properties, the macroscopic balance equations require only a knowledge of 
how the interfaces affect bulk phases on the average. This information may be more readily 
obtainable at the macroscale (e.g. relative permeability curves for multiphase porous media flow 
account for average surface tension effects) and, in any event, is crucial for a complete 
understanding of the flow. The equations derived here provide a rigorous framework for 
development and interpretation of experiments and computational models of multiphase phenom- 
ena. 

SECOND LAW OF THERMODYNAMICS 

To complete the development of macroscopic laws for multiphase systems an appropriate 
statement of the second law is required. According to the second law, the net rate of production 
of entropy of the whole system must be non-negative. Denote the rate of production of entropy 
of each phase by e~(p)~A~ (see Hassanizadeh & Gray 1979b), then the second law for an N-phase 
system may be stated as 

N 

Y~ c%p ~) ~ + ~ (ryXsasp >1 o. [85] 
~=1 s v 
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This inequality, with the second summation included, plays an important role in restricting the 
general form of constitutive equations to be developed for multiphase systems. Without inclusion 
of the surface entropy equation [82] in this expression, erroneous results are obtained for 
multiphase constitutive theory. 

CONCLUSION 

The averaging theorems developed in this paper, [46], [66] and [68], are new contributions to the 
fundamental tools for obtaining conservation laws applicable to multiphase systems. The new 
theorems average surface derivatives of interfacial properties over the surface within an averaging 
volume to obtain derivatives in space of the averaged properties. Thus, an averaging procedure 
for surface equations is obtained which is analogous to the standard averaging procedures for bulk 
phase equations. The theorems are applied to a general form of a conservation equation for a 
surface and then equations of conservation of mass, chemical species, momentum, energy and 
entropy for interfaces are obtained. These equations together with macroscopic conservation 
equations for bulk phases provide a complete set of balance laws for multiphase systems. The 
averaged equations obtained contain source terms due to the adjacent phases. These sources are 
seen to be of exactly the same form as the interphase transport terms which appear in macroscopic 
balance equations for bulk phases. If surface properties are neglected, the averaged equations 
reduce to restricti6ns on interphase transport terms typically obtained in earlier phase-averaging 
attempts. This observation confirms the utility of the averaging procedure to obtain averaged 
surface equations which will result in a more complete description of multiphase systems and also 
enable a more sophisticated constitutive theory to be implemented. Application of the averaged 
equations to specific systems is a topic for further study. 
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